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Turbulence occurs in numerous types of liquid and gas flows both in nature and in man-made 

apparatus. It consists in the presence of chaotic pulsations (i.e. very irregular variations in 
space and time) of the velocity, pressure, temperature, and other hydrodyn~i~ characteris- 
tics of these flows. 

We note to begin with that the scales of space inhomogeneities of the hydrodynamic 
fields of turbulent flow cannot be too small, since very small inhomogeneities would be as- 
sociated with very large velocity gradients. Such motions are practically impossible because 

of the very large amounts of energy required to overcome the forces of viscous friction. 
Hence, the minimal spatial scales x and periods T of turbulent pulsations (according to Kol- 

mogorov [I] these are given by Formulas X* (V 3/eft/4 and 7~ (v/E)~/~, where v is the 

kinematic coefficient of molecular viscosity and E is the rate of viscous dissipation of kine- 
tic energy per unit mass) sre, under ordinary conditions, several orders larger than the sca- 
les and periods of molecular motions. In air at normal pressure, for example, h J 0.1 cm, 
and the free path of the molecules is on the order of 10-S cm; moreover, since turbulent vel- 

ocity pulsations do not exceed the average veIocity of thermal motion of the molecules 
(close to 5 x IO4 cmfsec) in order of magnitude, the values of of= 0.1 set) exceed the av- 
erage time between molecular collisions (10-o set) by many orders. 

At distances comparable with h and over time intervals comparable with 7 all hydrodyn- 
amic fields vary smoothly and can be described by means of differentiable functions. Hence, 
turbulent flows are fully describable by means of the ordinary differential equations of hyd- 

romechanics (e.g. the Navier-Stokes equations). It is therefore unnecessary to return (as is 
sometimes suggested) to the equations of the kinetic theory of gases in order to describe 

tnrbuIence. (The latter statement is true except in special cases such as that af highly rare- 
fied gases in which the internal turbulence scale h is comparable or even exceeds the mean 
free path of the molecules. This would apply, for example, in the upper atmosphere, where 
X attains values of several tens of meters at altitudes above 100 km, hundreds of meters ab- 

ove 120 km, and thousands of meters above 140 km.) 
Furthermore, reversion to the equations of kinetic gas theory only adds to the difficulties 

involved in the closure problem of turbulence theory (which we shall consider below) and 
introduces additional difficulties arising from the necessity of converting from the concepts 

and equations of kinetic gas theory to the concepts and equations of macroscopic hydromec- 
harries (this conversion is, in fact, not so very simple: recall the derivation of hydromecha- 
nits equations from the equations of kinetic gas theory by the Enskog-Chapman method). 
Without going deeper into this question, we shall proceed from the fact that turbulent mo- 
tions can be described by means of the ordinary differential equations of hydromechanics. 

We must bear in mind, however, that the use of hydromechsnies equations for the exact 
desaiption of all the details of an individual turbulent flow is only a theoretical possibility. 
Such description is practically impossible due to the extreme irregularity of the hydrodyna- 

mic fields of turbulent flows. If we characterize the flow of a liquid or gas as a nonlinear 
mechanical system with a very large number of degrees of freedom for generalized coordin- 
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ates which, for example, can take the form of the coefficients of expansion of the velocity 

field in some complete system of functions of the space coordinates), it turns out that an 

enormous number N of degrees of freedom is excited at all times (according to Landau and 
Lifshits [Z] in the case of flow in a bounded volume N J WRs/NRe* )gf4, where Re is the 

Reynolds number and Re* is its critical value). This means that the variations in space and 
time of every hydrodynamic characteristic are described by functions containing an enor- 
mous number N of Fourier components, Moreover, hydrodynamic turbulent flow fields depend 
strongly on the most minute details of the initial conditions. Since these are never known 
in sufficient detail, it follows that exact solutions of the hydromechanics equations would 
be extremely cumbersome and practically useless because of their instability with respect 
to small perturbations of the initial data. In fact, the only expedient and feasible approach 
is a statistical description of turbulent flows based on the investigation of the statistical 
properties of the ensemble of turbulent flows under macroscopically equivalent external con- 
ditions. 

1. Functional formulation of the turbulence problem, Let US formulate 

the problem of complete statistical description of turbulent ffows (sometimes called the 

“turbulence problem”) in mathematical language, limiting ourselves for simplicity to the 
case of an incompressible fluid whose flows are completely characterized by their solenoi- 
dal (i.e. nondivergent) velocity fields U(X, t); the pressure p can be expressed in terms of 
the velocity field at the same instant by means of Formula 

a%&, (x’. q UA (x’, t) p 1 a%si, (x’, t) a8 (x’, 6) ax‘ 

p (x, t) = - ph-r {x, x’) ax,’ ax@’ =ctn a ax,< &l$ Ix--x’( (1.1) 

where p is the constant density of the fluid; A-’ is an integral operator which is the inverse 

of the LapIacian (the recurrent Greek-letter subscripts denote summation). Let 9 = (0) be 
the phase space of the turbulent flow of the incompressible fluid, i.e. the set whose points 
o are all the possible solenoidal vector fields U(X, t) which satisfy the hydromechanics 

equations and tbe appropriate boundary conditions at the stream boundaries; we assume that 
some topology is specified on this set, so that n is a linear topological functional space. 
The turbulence problem then consists in finding the probability distribution in the phase 
space, i.e. in determining the probability measure P (da) on 0. Assumption of the existence 

of such a probability distribution is equivalent to interpreting the velocity field U(X, t) of 
the turbulent flow as a random field. 

From the purely mathematical standpoint the phase space fi is finite-dimensional. Deter 
mination on an infinite~imension~ space of a measure P fdf2) with properties(*) rendering 
it convenient for analysis is not a simple matter (e.g. see the monograph by Gel’fand and 
Vilenkin [3]). Furthermore, since a volume element cannot be defined in an infinite-dimen- 

sional space, the probability distribution P (dQ) does not have a probability density. Hence, 
in order to avoid operations involving functions of the sets P(S) and S C a, which are rath- 
er difficult to analyze, we csn investigate not the probability distribution P&at), but rather 

its “Fourier transform”, i.e. the characteristic functional 

m [e (x, t)] = (PXP fi (e. 4j> = c CP”) P (cm) 
. 

(1.2) 

where (0. u) represents the integral over dXdt of the scalar product of the random function 
U(X, t) and the nonrandom function 8(x, t) taken over the entire volume occupied by the flu- 
id; the square brackets here and below denote the mathematical expectation of this expres- 
sion (i.e. its integral over the measure P(dQ)). Th e notion of the characteristic functional 
was first introduced in 1935 by Kofmogorov [4] (for probability distributions in Etanach spa- 

*) A particularly desriable property is that of countable additivity, which would, for exam- 
ple, guarantee the interchangeability of the operation of integration over this measure of 
functions in 0, i.e. of the mathematical expectation operator of functionals in II (X, t), 
with limiting processes including the differentiation and integration of these functionals 
over the parameter 
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ces). The necessary and sufficient conditions for the functional @[8(x, t)] to be the char- 
acteristic functional of some countably additive probability measure (among these condi- 
tions is that the function be nonnegatively defined, that it equal unity at zero, and that it 
be continuous in some topology), and also the conditions for the unique definition of the 
measure by its characteristic functional were investigated by Prohorov [S]. We note, how- 
ever, that the above mathematical difficulties arising from the finite dimensionality of the 
phase space Q are devoid of physical significance, so that the number N of degrees of free 

dom of the turbulent flow, and therefore the number N of dimensions of the phase space, is 
very large, but nevertheless finite (as noted above). 

Thus, we can assume that determination of the characteristic functional is equivalent to 

the solution of the turbulence problem. In determining the characteristic functional we can 

make use of the fact that it must satisfy certain dynamic equations which follow from the 
hydromechanics equations. In order to formulate these equations we introduce the notion of 
the variational derivative of the functional (P[~(x, t)] with respect to the functional argument 

e, (x, t) , setting 

D, (x’, t’) 0 [O (x, t)] = 
@ te (x, t) + $0 (x, Ql- Q, te (x, l)l 

lim - = 

16je(x, ‘)I-’ 

V-4 s 6jf3 (x, t) dx dt 
V 

= ;i & @ [e (x, t) + hej6 (X - x’) 6 (t - t’)] (1.3) 

where 6j8(~, t) is a vector function with only its j-th component not equal to zero (even 

this component is nonzero only in a small neighborhood V of the point CX’, t’); e, is the 
unit vector along the zI -axis. In the case of characteristic functional (1.2) variational deri- 
vative (1.3) is given by 

Dj lx’, t’) 0 [e (x, t)] = i cuj (x’, t’) f3xp {i (e -u)>) (1.4) 
Recalling that the quantity exp { i (8. II)] is constant in space and time, differentiating 

both sides of Eq. (1.4) with respect to xi, summing over j, and making use of the equation 
of discontinuity ~?u,(x’, t’)/dz i= 0, we obtain the following equation in first-order varia- 
tional derivatives for functional (1.2): 

This equation is equivalent to the condition of solenoidality of the velocity field (it is also 
equivalent to the requirement that the values of the functional @[8(x, t)] remain unchanged 
upon the addition to its functional argument 8(x, t) of the arbitrary potential term V~(X, & 

or to the requirement that the functional @ depend only on the solenoidal component 8’(x, 
t) of its argument). Furthermore, differentiating both sides of Eq. (1.4) with respect to t’, 
expressing du, /at’in terms of the space derivatives of the velocity field by means of the 

Navier-Stokes equations, and once again applying Eq. (1.41, we obtain the following dyna- 
mic equation for the characteristic functional @ : 

(1.6) 

We must solve this equation for a statistically defined initial velocity field U,(x) = u(x~ 

0). i.e. under the condition that on the functions 8(x, t) = d(x) 6(t) the functional @[0(x, 
t)] become the given characteristic functional cP,[B(x)] of the initial velocity field. A dy- 
namic Eq. of the (1.6) type for the characteristic functional of the velocity field of a turbu- 
lent flow of an incompressible fluid was first obtained by Hopf [6] (although for a less com- 
plete statistical characteristic of the velocity field, i.e. for its space characteristic func- 
tional, which we shall soon discuss). Eq. (1.6) is the most complete and compact form of the 
equations of turbulent motion. 

A remarkable property of Eq. (1.6) is the fact that it is linear. Thus, although fluid dyn- 
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amics is nonlinear (the evolution of an individual velocity field U(X, t) is described by non- 
linear equations), the basic problem of the statistical dynamics of turbulent flows (the tur- 
bulence problem) is a linear one. The characteristic functional 13 is therefore subject to the 
superposition principle: if the initial functional a0 is a linear combination of functionals 
@Jr) , then @ is a similar linear combination of functionals a(y) which are solutions of 
Eq. (1.6) for the given initial op, (7). 

A formulation of the turbulence problem which is somewhat more general than (1.6) re- 
sults from describing turbulent fluid flows in a field of prescribed random forces X(x, t) by 
means of the compatible characteristic functional of the fields U(X, t) and X(X, t) defined 
by Formula 

CD [0(x, t), f (x, t)] = <exp {i (0.u) -+- i (f .X))> (1.7) 

whose dynamic equation can be obtained by adding to the right side of (1.6) the term 

where “)rp is the variational derivative with respect to ffi(X, t). Specific problems for such 

an equation are formulated in 173, for example. On the other hand, a formulation of the tur- 
bulence problem which is narrower than (1.6) but is nevertheless adequate for many purpo- 
ses involves description of the turbulent velocity field U(X, t) at a fixed instant t by means 
of the characteristic functional @[8(x); t] g iven by the same Formula (1.2) in which (6~) 
now represents the integral of the scalar product 8(X) - U(X, t) with respect to d X oniy; such 
a func:ional can be called a space functional, while @[t98fx, t)f is a space-time functional. 
The dynamic equation for the space characteristic functional of the velocity field is given 

by 
30 _ = (,“.(‘a&“z+~“) D,) 
at 

(1.8) 

where B* is the solenoidal component of the vector field 8(x) which (by virtue of (1.5)) is 
the only variable on which the functional @ depends; D is a vector operator with the compo- 
nents ZI (xl. The solution of Eq. (1.8) under the given initial condition @f@(x); O] = Qt,[@ 
(x)1 y' fd le s a complete statistical description of the velocity field U(X, t) at each fixed in- 
stant t. 

Equations of turbulent motion (1.6) or (1.8) can sometimes be expressed conveniently in 
a spectral form in which the argument of the characteristic functional is not the function 8, 
but rather its Fourier transform ([8], Sec. 28). 

2 Equations for finite-dimensional probability distributions. Let 
dQ be a cylindrical set of elements of the phase space f2 of turbulent flow consisting of 
all those functions U(X, t) which satisfy the hydromechanics equations and the boundary 
conditions which at fixed points n of space-time h&, = (x,, tm), h = l,..., n) assume the 
values II satisfying the conditions IA 

“i 
< u, &,I,< urn/ -I= du,, (i = 1, 2, 3). The prob- 

ability measure P(dQ) of such a cylindrica set can be written as 

P(d~f=p,~,,,..,M,(~t,...,U*)dul...., du, (2.1) 
where PM (II 1,..., u,) is the &-dimensional probability density of the random quan- 
tities U Z! ‘iei;lMf u = ulMn 1. Under certain general conditions the knowledge of all the 
probabil!‘ity denii;iLL PnM,,,+., M, (Us,..., u,) for values of the field U(X, I) on all possible 

finite sets of points of space-time permits complete construction of the measure P (da). In 
other words, knowledge of all these densities can constitute a complete statistical descrip- 
tion of the random field U(X, tf. Thus, the problem of turbulence reduces to the determina- 
tion of all of the finite-dimensional probability distributions PM,,,,,, M (II, ,..., u,). Con- 

versely, if characteristic functional (L2fis known, then the finite-dimennsional probability 
distributions can be found from its values on linear combinations of delta functions, since 
these values are given by 
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i.e., since they are characteristic functions of finite-dimensional probability distributions; 
the latter can be found from Formulas 

PM,, . . . , i%f, (‘l’ . ’ ’ ’ u,) = 

The characteristic functions for the values of u at the points M1,..., M, for the same t 
can also be obtained from the space functional O[~(X); tl, 

(2.4) 

The condition of solenoidality of the velocity field in terms of the characteristic func- 
tions of the finite-dimensional probability distributions can be written as 

IV,.VljcPa (% t)le=o = 0 (2.5 

regardless of whether the function q depends on any other arguments Jf1,..., M, and 6 
8 

I’.**’ 

n* 
Closed dynamic equations for characteristic functions (2.2) or (2.4) are unobtainable. In 

fact, even if we neglect completely all the nonlinear terms of the Xavier-Stokes equations 

(i.e. if we take the latter simply in the form Ju/i)t = VAU) the space characteristic func- 
tional of the velocity field is given by 

@ If3 (x); t] = uhl [l ( exp I 

1 x - x’ 1% ) 0 w dx’ 

4vt (43w)” 1 
while for 8 (x) = ~t$Jj (x - X,,J we have 

lTl=1 

W-3 

(2.7) 

i.e. this quantity depends on the values of the initial velocity field U,,(X) not only at the 
points X t,..., X,, but also in all continuous space, so that it cannot be expressed solely 

in terms of the values q X1 *.*.,Xo f B, ““1 6, ; 0). We can only obtain equations expressing 

the derivatives of the n-point characteristic functions with respect to time in terms of the 
values of these functions themselves and of the (n + l)- point characteristic functions. For 

functions (2.2) with distinct tt,..., t, and distinct xl,..., 2, these equations are of the form 

a ----iv, 
%I m 

‘ve,) 1 TM,, . ., M,, @I,. . . , ‘,) = 
(2.8) 

= - i [(%-Vxz2 A-’ ix’, xl (V,~V~Y%M,, . , . , M,M ($, . . . , %. @led, xflJx f 
??a 

Making use of (2.81, we obtain the following dynamic equations for probability density 
(2.3): 

c & + (“m’D;m)]~&..,M, @l, . - -t%) = 
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= - s [(VUm.VX.) A-l W, 9 @47,)‘JpM~,...,MnM Oh, . . ., u,, u)l,r=, du - 
m 

-y 5 (u*Vum) [A~PM,,...,M,M (~1, . . ., 
s 

(2.9) 
un, u&,x du 

m 

The dynamic equations for functions (2.4), which result from (2.2) when we set tI = . . . = 
= tn = t, can be obtained by summing Eqs. (2.8) over all m with allowance for the validity 
in this case of the Eq C&$/&m = &/&. Similarly, from (2.9) we can obtain an equation 
for the probability density Pxt ,..,, =, (u, ,..., II,,; t). Eqs. (2.8) and (2.9) are somewhat simp- 

ler when expressed in spectral form. Specifically, let us assume that we can give meaning 
to the spectral representations 

,qM,,.. .,M, @I,..., 6,) = 1 =P [i i knom] $Q,, . . . ,Q, @l, . . . , %I dk,, . . . , dki (2.10) 

??I=1 

PM, )..., M,(% ,..., %)=lexp[i i km’xm]nQ ,...., Q,h ,..., uddkl ,..., dkn 

m=1 

where Q, = (km, t,). Here the generalized functions x Qt,..., 9, (u 

03 1 ,..., 6, ) are related by the same Fourier transform (2.3) as the 
l,“‘V 4) and +Ql,..., 

%t ,+*., ur,) and (Pi, ,..., ,,., (6, ,..., 

functions PM I,..., hrn 
8,). We then obtain from (2.8) the following equations 

for the functions $Q1 ,..., Q”, (8, ,..., 0,): 

[ 
T& 

m 
-t (kkV,m)] %Q ,,..., Q, (01,. .,%I) = S’dk {[(k*em);‘ve)’ - (2.11) 

--Vk”(em’Ve) 1 ~Q~r...,Qm_lQm'Qm+l...Q Q(e~,...,en, @ 
(Qm’ = (km - k, trn)t Q = (kY tm)) 

1 0=0 
Similarly, (2.9) yields the following equations for the functions a% Qt...., Qn (u t )..., u,.): 

I 
fi~,,...,~~ (Ul,...,Un)= vk3(u*Vum)- (2.12) 

-i 
&au)” (h.V, 1 

" 
k' 1 *Q,,..., Q,-l Q,'Qm+l,....Q,Q ("L...,un9 u, 

Specifically, let us write out the equation for the one-point probability distribution of the 
velocity field, e.g. in the form (2.9). After an obvious change in notation, we can write this 
equation in the form 

[g + (u =v.q P (U I x, t) = (2.13) 

= - [lV,.V,,) A-l (~‘9 xl) (u~~v,,)"P(u I x, t; ~11x1, ~jl,~~~~ul- 

-v ! (ut.V,) [A,,P (u I x, c ul I xl, ~)l,I=,dul 
3 

Any of the equivalent systems of Eqs. (2.8), (2.9). (2.11), or (2.12) can be regarded as a 
new form of the equations of turbulent motion (such equations have not, to our knowledge, 
appeared in print previously) (*). Analytically, these equations are, of course, simpler than 

the equations for characteristic functionals (1.6) or (1.8), since the latter contain variation- 
al derivatives instead of the partial derivatives Ve 

m 
or,V,m. On the other hand, the new 

*I Remark (during proofreading). After submission of the present paper for pub- 
lication there appeared Lundgren’s study [ 241 in which equations for one-point and two- 
point probability distribution functions are obtained in forms similar, for example, to 
(2.9) and (2.13). 
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equations are not closed; the number of unknown functions is always larger-than the num- 
ber of equations in this case, so that their use involves the problem of closure. 

3, Egluatfons for moments. The simplest statistical characteristics of a turbu- 
lent velocity field are its moments as given by any one of Formulas 

Bj,, _Jpfl, * . ., M,) = (y$Ml). . * uj, (M,b = 

= 5 ulj, 9 * * * W,PM,, . . ., M, WI,. . ., %J due.. .dun = 

(3.1) 

= (- i)* 
[ 

a% Mr.. . ., M,, % 1. ., @a) = 
aelj, * * Nnjn I B- I-. . .=B,WO 

where some of the subscripts jr,..., j, and some of the points MI,..., M, may coincide. Un- 
der certain general conditions knowledge of all the moments enables us to reconstruct finite- 
dimensional probability distributions by making use of Taylor series for their chatacteris- 
tic functions 

(3.2) 

‘PM ,,I. .) M, (4, * f *I 
0%)~ 1 + 5 iN 

N=l *I 

$ Bo,,...,sN(Mm,r...rMmN)em,ar”‘em~apl 

m~,...,mpJ=l 

Similarly, under certain general conditions knowledge of all the moments of the velocity 
field makes it possible to reconstruct its characteristic functional with the aid of the func- 
tional Taylor series (3.3) 

m 10 (WI = 1 f 5 iN 1 Da,, . . ., bN (Ml,. . ., MN) %, (Ml)* * e O~XN t"N) dM1 * * * d"N 
NT 

Thus, the problem of turbulence can be reduced to the dete~fnation of all the moments 
of the velocity field. These moments can be found from the dynamic equations obtained, 
for example, by computing the variational derivatives at zero of the right and left sides of 
Eq. (1.6) or (1.8) for the characteristic functional or the derivatives at zero with respect to 
the argnmsnts earl of the right and left sides of Eq. (2.8) for the characteristic function of 
the finite-dimensional probability distribution. Such dynamic equations can also be derived 
by computing directly the derivatives of the moments with respect to time with the aid of 
the Navier-Stokes equations. This method was used by Friedmsnn and Keller [9l, who were 
the first authors to give a complete formulation of the turbulence problem (in terms of mo- 
ments). The Friedmann-Keller equations for the moments B1 t P..., i” Of t,..., M,.,) for distinct 

xr,..., za and distinct t,,..., t, are 

( a 
(3.4) 

--VAX Bj,,..*,j_(M1,..,,M,)= 
%n ?n i I 

=-A__“. 
&:,, . (M Ii, * **t inI- i,= j,,l* * * .,I, 1,. . ., Mm,. Mm Mm M,+I,. . ., M,,) -I- 

where, as above, M = (xx, t,). For similar moments with equal time arguments tI = . . . = tn = 
= t the dynamic equations can be obtained by summing Eqs. (3.4) over all m with allowance 
for Eq. &%/at, = aB/dr, which is valid in this case. The eqnations for the moments are 
yet another form of the equations of turbulent motion. Their analytic form is simplest, but 
they are always open; the equations for the a-th order moments always contain (n + I)-th or- 
der moments. For clarity let us write out the simplest of the Friedmann-Keller equations. In 
the case n = 1 Eqs. (3.4) become 
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( a 
----Ax 
at ) (Uj (x, t), = -g <Uj(X, t) ua (x, t)) + 

a 

+ $ n-l (x3 ii) &$--& (u, (x’, q UQ (x’, 1)) 
1 P 

These equations, which can be derived simply by averaging the Navier-Stokes equations 
were derived by Reynolds in 1894 and are often called the Reynolds equations. Using the 

notation II’= U - (U> for the pulsations (deviations from the average) and applying Formu- 

la <u,u$ = <a,> (Ug) + <u,‘ng’>, we note that in addition to the average velocity ,<u> 

Eqs. (3.S) also contain the new unknowns (u,‘ug’> (the quantities ran = --p(u,‘u~‘) 

are called the Reynolds stresses). Further, for n = 2 and tt = r2 = t from (3.4) we obtain 

(3.6) 

These equations become markedly simpler in the case of isotropic turbulence: the terms 

in the third line of Formula (3.6) vanish, the second and third moments in the first two 

lines depend only on r= x2 - xi, and the only independent equation of (3.6) is 

[$ - " ($ + ~$Y)]~LL(~* t)=($ + +)BLL,L (r, t) (3.7) 

where the subscript L corresponds to the direction along the vector r. Eq. (3.7) is called 
the K&m&-Howarth equation (1938). F inally, let us write out the Friedmann-Keller equa- 

tions for the one-point second moments; they turn out to be more complex than (3.6), and it 

is convenient to write them in the form 

a (Ui’Uj’) a 
at + - [t"i'Uj') C”,> + (“i’uj’Ua’) + $ (<p'U+_') 6iG + (P’Uj’) Sia) - axa 

-((Ui’bjaz> + (Uja;,>)] - (U{fj> + (Ujji) + 
p’ aui 

( ( 
&Lj 

p azj + ay )D - (3.8) 

( 
au.1 aui a (Uj) 

<‘ia’ *> + ('jm' az->) - ( (“i’u,‘) 7 + (Uj’U,‘) 
a <“i> 
- - 

cl a c ax, ) 
Here f, are the components of the acceleration due to external forces which we introduce 

for the sake of greater generality; 0,) = 

The terms containing p ‘, f, ‘, and a,,: 

v(du,/dx, + du,/ax, ) is the viscous stress tensor 

as well as the third moments (IQ’ uj’ uor’> cannot 

be expressed direcily in terms of (ui’ Uj’> and are therefore “extraneous” in Eqs. (3.8). 

4. Approximate closure of the equations for moments. The simplest 

method of approximate closure of equations for moments involves neglecting the (n + I)-th 

order moments in the equations for the n-th order moments. The first approximation (n = 1) 

in this case would be that in which the second moments <um’ UB’> (the Reynolds stresses) 
are neglected in the equations for the first moments (3.5). But this would mean using the 

ordinary Navier-Stokes equations for the average velocity field (U (x, t)> , i.e. neglecting 
turbulence completely. This is clearly unsatisfactory. The second approximation 61 = 2) in- 

volves neglecting the third moments in the equations for the second moments (3.6). This 

approximation is valid for very weak turbulence only, e.g. for the final stage of degenera- 

tion of isotropic turbulence behind a wind tunnel grating. In this case the second moments 

are given by equations which follow from the Navier-Stokes equations if all the nonlinear 

terms in the latter are neglected. Since the nonlinear terms define the distribution of turbu- 

lence energy over the spectrum of the turbulence scale, it is impossible to determine the 

form of the turbulence spectrum in this second approximation, i.e. it must be specified in 

the initial conditions (corresponding to the beginning of the final stage of turbulence de- 
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generation). In the case of isotropic turbulence this approximation can be obtained by re- 
placing the right side of Eq. (3.71 by zero. The most general solutions of the resulting 
equation for !I,, (r, t) were investigated by Sedov [lo and 111. 

The second method of approximate closure consists in assuming that the (n + I)-th or- 

der semiinvariants vanish. This enables us to express the (n + ll-th order moments in terms 
of lower-order moments and thereby to close the Friedmann-Keller system for momenta of up 

to order n, inclusive. (This method is related to the Kirkwood method in statistical mechan- 
ics and to the Tamm-Dankov method in quantum field theory). The first nontrivial applica- 

tion of the method occurs with n = 3, when it reduces to applying the hypothesis of Million- 

shchikov 1121 on the equality to zero of the fourth-order semiinvariants of the velocity 
field; here the fourth-order moments are expressed in terms of the second-order moments by 

means of Formulas valid for the many-dimensional normal distribution 

This hypothesis involves no as_sumption of weak turbulence. It agrees satisfactorily 
with empirical data for large-scale turbulence components (but is hardly suitable for des- 

cribing small-scale components). 
The third method involves the use of hypotheses on the self-similarity of the statistical 

characteristics of turbulent flow. The most common self-similarity hypothesis (first advan- 

ced, although in slightly different form, by K&m& [ 1311 p resumes that it is possible to in- 

troduce in the neighborhood of each point Mu of turbulent flow length scales Z@f, 1 and 

velocity scales b(M,-,) such that the statistical turbulence characteristics (i.e. those which 
are not directly affected by molecular viscosity) introduced by way of these scales are at 
least approximately universal (i.e. equal for all points M 1 functions of the dimensionless 
Galilean coordinates [= [X - x,, - <u(M,) ) (t - t,)l/&,). The turbulence scale I cau 

be defined, for example, as the average length of the “mixing path” or as the “correlation 

radius” of the velocity field. The velocity field can represent, for example, the “turbulence 

intensity”, i.e. the mean-square value [< 1 U’ la>]“’ of the velocity pulsations. 

Applying this hypothesis to the profile <U (2)) of the average velocity of steadystate 

plane-parallel turbulent flow, we follow Loitsianskii [14] in requiring fulfillment of the con- 
dition 

(u (2)) - <u (20)) 2 - 20 

<u pa + 1)) - (U (20)) =JW 

let us say to within small third-order terms in (z - 
mL formula for 1 

zol/l. This requirement yields the K&- 

a<u> aa <u> -- 
1=--x & a23 I 

Zilitinkevich and Laikhtman [15] suggest the following generalization of the K&m& 
formula for temperature-stratified flow: 

Here g is the gravitational acceleration, <8> is the potential temperature, and u is a 
constant. 

With reference to the two-point moments of isotropic turbulence appearing in the K&II&P 

Howartb Eqs. (3.71 the K&m& self-similarity hypothesis can be written as 

where jl ([) and f $61 are some universal functions. Here b and 1 are some functions of 

time t. Solutions of the form (4.31 of Eq. (3.71 h 
Sedov [ 10 and II]. 

ave been investigated most extensively by 

Kolmogorov [I] proposed special hypotheses for the statistical characteristics of small 
scale components of developed turbulence. These components exist in a state of statistical 
equilibrium between the forces of inertia and viscosity (the “equilibrium interval” of scales 
is small as compared with the scales of the flow as a whole). Specifically, Kolmogorov sug- 
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gested that this state could depend on only two constant parameters, i.e. on the rate a of 

turbulent energy dissipation and on the viscosity coefficient V, so that ! = (V 3,~’ a) 114 and 

b = (V E)1/4. For very large Reynolds numbers the “equilib~~ interval” of the scales is 

so long that the scales in its large-scale portion exceed by many times the minimal scale 
of turbulent inhomogeneities (V 3/e) t/4, In this large-scale part of the “equilibrium inter- 

val”(called the “inertial interval”) the viscosity forces are no longer essentiul to turbu- 
lent motions, and the state of the latter depends on the single parameter e. This makes it 

possible to determine the functional form of the statistical characteristics of the turbulence 

components with scales from the “inertial interval”. For example, at distances r from the 

“inertial interval*’ the structural tensor of the velocity field is given by 

<[Ui (x + r) - uf (X)] [ uj (X + r) - Uj (X)]) = C (er)% i 
i rirj 

6*j - 7 7i_) (4.4) 

where C is a numerical constant. 
We can also mention the similarity hypotheses of Monin and Obukhov [ 16 and 171 for tur 

bulence in a temperature-stratified boundary layer with constant friction stress - p <a’~‘>.= 

2 =PU* and constant heat flux cop CT ‘w’) = q according to which the statistical state of 

the turbulence components with scales ranging from the maximal (comparable with the dis- 
tance to the wall) to those in the inertial interval, inclusive, depends only on the three con- 

stant parameters u*, q/c,p, an d g/CT,) (the latter, called the buoyancy parameter, char 

acterizes the Archimedeau accelerations gT’/ <To 1, where T is the temperature). This 

yields I * cpp Tou3* /(gq) and b * u+, while for the temperature we obtain the scale T, * 

- q/(cppu, 1. In the case of temperature homogeneity we are left with the single parameter 

a+, so that, for example, we obtain 9 (u) / &z - U* / z, whence we have the familiar log- 

arithmic law for the velocity profile ‘in the boundary layer. In the case of thermal convection 

(large q > 0) the parameter u* ceases to be essential, so that for the potential temperature 

profile, for example, we obtain 

5, Semiemp~rical theories of turbulence. There are numerous papers in 

which hypotheses on the form of the “extraneous“ unknowns more general than those listed 

in the preceding Section have been employed. Such hypotheses are usually suggested by 

more or less realistic physical hypotheses and yield formulas with parameters subject to 
empirical determination. We need mention only a few such semiempirical hypotheses. 

The simplest of these have to do with the form of the Reynolds stresses 7fj= - p(ni’aj’>, 

which are “extraneous” unknowns in Reynolds Eqs. (3.51 (and also with the form of the 
turbulent heat flux q1 = cpp <T’ui’> which arises in the averaging of the heat transfer equa- 

tion). By analogy with the description of molecular transfer in semiempirical formulas it is 

generally assumed that or 

I 

is a linear function of the tensor of the average deformation 

rates h, /r3x, + duj /4x, while q, is a linear function of the average temperature gradient 

fl<T >/ax, ). The simplest assumption of this kind, which dates back to Bousainesq (18971 

isoftheformr=-p<u’w’).=pKdiu>/d z, where K is th* turbulent viscosity coefficient 

(similarly, according to Taylor (19151 and Schmidt (19251 q = cPp CT ‘WI’) = - cppa Xc%/8 zf. 
In Prandtl’s theory (19251 we set X = 128(u) /i) z, while in Taylor’s theory (1932) we set 

f?7/at = p Ki?2(u)/r3 t 2 with the same expression for K. 
The more complex hypotheses have to do with the form of the “extraneous” unknowns in 

Eqs. (3.81 for one-point second moments. Kolmogorov [18] suggested that K be determined 
by means of the turbulent energy equation obtainable from (3.8) by summation over i = j, 
which in tbe case of the atmospheric boundary layer, for example, reduces to 

where we have merely omitted a single term describing the molecular diffusion of the turbu- 
lent energy. After application of Boussinesq.type hypotheses this equation becomes 
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Further, if we set K - lb and e - b3/1 in th e spirit of the K&m&u self-similarity hypothe- 

ses and specify somehow the turbulence scale 1, then the Reynolds equations together with 
Eq. (5.2) for b form a closed system. Such a system was used by Monin [19] to describe a 
thenuically homogeneous atmospheric boundary layer in which 4<8>/3 z = 0 for 1 = x t (in 
recent years similar studies have been carried out by several authors who have used more 
detailed assumptions concerning the dependence of 1 on z (e.g. see survey [20]). 

More detailed utilization of Eqs. (3.8) is the subject of the papers by Rotta [21] and 
Davydov [22]. Applying Eqs. (3.8) to the atmospheric boundary layer and making use of the 
methods of [ 213 and [ 221, Monin 1231 set 

V (VUi”VUj) = [(CS - 3C4) hj,hj + CdGij] 7 
(5.3) 

and employed similar formulas for the quantities ( p’ll p ST’ / dzi>, (Vui’*VT’> aud 

x <(VT’)a> arising in Eqs. of the type (3.8) f or (ut’T’> and (T’2> (here h, is the unit 

vector in the vertical direction). When certain small terms in the left sides of the equations 
are also neglected, the only “extraneous” unknown remaining in them is the turbulence 

scale 1. Considering the latter to be given, Monin [23] succeeded in determining the velo- 

city profiles <U (2)) and (U (z)>, the temperature profile (8 (z)>, and all the second mo- 
ments of the velocity and temperature pulsations (including the components of the horizon- 
tal turbulent heat flux qz = cop (T’u’> and qv = cpp (T’v’>, which are generally different 

from zero in a temperature-stratified medium, as has been verified by direct measurements 
of these quantities. 
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